Nitrogen and oxygen evolution by hydroxylamine-treated chloroplasts

Richard Radmer and Otto Ollinger

Martin Marietta Laboratories, 1450 South Rolling Road, Baltimore, MD 21227, USA

Received 26 May 1982

Photosystem II

Oxygen evolution

Hydroxylamine Spinach chloroplast Nitrogen evolution

Mass spectrometry

1. INTRODUCTION

Hydroxylamine (NH₂OH) is one of a small group of compounds (along with hydrazine (NH₂NH₂) and hydrogen peroxide) that appear to be competitive inhibitors of photosystem II-mediated H₂O oxidation. These compounds, which are all analogs of (2 molecules of) H₂O, can evidently override H₂O oxidation without destroying the O₂ system.

Earlier studies showed that dark incubation of chloroplasts in the presence of low concentrations of NH₂OH caused a 2-flash delay in oxygen evolution. This finding was interpreted as the irreversible binding of 2 NH₂OH molecules at the substrate site of the H₂O-oxidizing enzyme [1] or alternatively, as the binding of a single NH₂OH molecule following the reduction of S₁ to S₀ [2]. Similar effects were also observed with N₂H₄ [3] and H₂O₂ [4]. Results obtained with H₂O₂ led to the proposal of a reduction of S₁ to an over-reduced 'S₁' state [4].

In [5,6] we found that molecular N₂ was the sole significant stable reaction product of the PS II-mediated photooxidation of hydroxylamine and hydrazine under conditions in which the O₂-evolving system was inoperative. The stoichiometry of these reactions under substrate-saturating conditions suggested that in both cases the N₂ was formed by the combination of 1 e⁻ oxidation products.

Here, we describe experiments in which we directly monitored the photooxidation of low concentrations of hydroxylamine (as N_2 evolution) in

Abbreviations: DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; PS II, photosystem II

O₂-evolving chloroplasts during a series of flashes. We hoped to thereby distinguish among several possible oxidation mechanisms at low substrate concentrations, i.e.:

- (1) N₂ evolution on the first flash, but not significantly thereafter, would imply that one molecule of NH₂OH was bound to the O₂ system; the other 'lost equivalent' would then be ascribed to reduction in the dark.
- (2) Equal N₂ evolution on the first 2 flashes would suggest that 2 NH₂OH molecules were bound.
- (3) Absence of a NH₂OH oxidation product when there was a delay in the O₂ flash yield pattern would imply that NH₂OH served as a donor but was not bound.

Our results showed that 1 molecule of tightly-bound hydroxylamine is oxidized on the first flash, after which O_2 evolution proceeds normally, starting from S_0 generated in the dark. This unusually tenacious binding suggests that the H_2O oxidation site of the chloroplasts has 2 H_2O binding sites ~ 1.47 Å apart (the length of the O-N bond [7]).

2. METHODS

The mass spectrometric apparatus and measuring technique used were similar to those in [5]. The heart of this system is a 1-mm-thick silicone rubber membrane (in the bottom of the 1-ml reaction vessel) that admits dissolved gases in the liquid phase to the mass spectrometer vacuum. A chloroplast suspension is carefully layered on the membrane (through a hole in the Plexiglas lid) and illuminated from above. Since the membrane and the chloro-

plast suspension are in direct contact, the mass spectrometer can effectively monitor chloroplast gas-exchange reactions.

Saturating actinic flashes were provided by a xenon flash tube (FX-101, EG and G, Salem MA) mounted a few millimeters above the vessel. The flash duration at half-maximum was 1 μ s, and the frequency was 0.33 Hz. The signal passed through an R-C network with a time constant of 70 ms before being recorded on a fast-running strip chart.

The experiments were performed with spinach chloroplasts [8]. Sample handling was as in [5]. All measurements were made at 15°C. To increase the sensitivity of the analysis, all N₂ evolution studies were conducted using hydroxyl[¹⁵N]amine—HCl (99.5 atom% ¹⁵N, obtained from Prochem, London and buffer from which the N₂ had been removed by purging with argon.

3. RESULTS AND DISCUSSION

3.1. Effect of NH₂OH concentration

Table 1 presents the initial fluorescence yields observed after a saturating flash in the presence of DCMU as a function of [NH₂OH]. As shown in [6,9], the period of high fluorescence yield following a saturating flash is markedly extended in the presence of NH₂OH and DCMU. The data of table 1 indicate that this effect becomes saturated at ~ 10 μ M NH₂OH. Consequently, above this concentra-

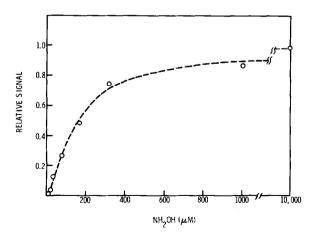


Fig. 1. Relative N_2 signal on the first flash as a function of [hydroxylamine]; 10 μ l chloroplasts (6 mg chl/ml) were subjected to a series of flashes after a dark time of 10 min.

Table 1

Initial fluorescence yield after a saturating flash in the presence of DCMU as a function of [NH₂OH]

NH ₂ OH (μM)	Normalized initial fluorescence		
0	0		
1	0.15		
2	0.28		
4	0.44		
6	0.54		
8	0.57		
10	0.60		
30	0.59		

The reaction mixture for each experiment contained 50 mM Tricine (pH 7.4), 5 mM MgCl₂ and chloroplasts (6 µg chl/ml), in addition to the NH₂OH. The experimental protocol was as follows: 10⁻⁴ M DCMU added, 4 min dark time, flash, 1 min dark time, fluorescence rise curve obtained [17]. The tabulated fluorescence was calculated from the expression,

 $(F_i - F_i, \min)/(F_m - F_i, \min)$ where

 F_i = initial fluorescence level under the stated conditions.

 $F_{i,min}$ = initial fluorescence level in dark-adapted samples in the absence of DCMU,

F_m = maximum fluorescence level attained after prolonged illumination (> 10 s)

tion all O₂-evolving centers are occupied by, or have reacted with, NH₂OH after a long dark period. (A similar conclusion can be drawn from the activation-phase data in [2].)

Fig.1 shows the effect of NH₂OH concentration on the amplitude of the N₂ signal observed on the first flash. Under these conditions, the PS II centers were substrate-saturated down to 10–20 μM , as evidenced by measurements of the initial fluorescence yields (above) and O₂ flash yields (see below). Thus, at >20 μM , the curve reflects the efficiency of NHOH \bullet combination. These data suggest that:

- The N₂ flash yield increases with [NH₂OH] up to several hundred μM;
- (2) This increase is independent of PS II reactions at $> 10-20 \mu M$.

Table 2
Relative flash yields for N₂ and O₂ at different [NH₂OH]

NH ₂ OH (μM)	<i>Y</i> ₁	Y ₂	<i>Y</i> ₃	Y4	Y ₅	Y ₆
		N_2	evolutio	n		
0	0	0	0	0	0	0
5	11	5	2	2	2	2
10	22	12	12	10	10	10
20	47	32	30	26	26	26
30	64	46	46	42	40	40
40	88	72	72	64	60	60
80	176	160	152	144	128	128
160	400	368	360	360	336	328
320	584	528	512	504	504	496
		O_2	evolutio	n		
0	0	80	976	560	272	192
5	0	16	536	520	440	256
10	0	0	288	384	528	336
20	0	0	112	256	608	464
30	0	0	48	112	528	464
40	0	0	16	64	448	448
80	0	0	0	0	192	368
160	0	0	0	0	32	112
320	0	0	0	0	0	16

Experiments were done as in fig.2; at [NH₂OH] $> 500-600 \mu M$, the N₂ flash yields $Y_1 - Y_6$ were essentially equal

3.2. N₂ flash yield sequence at low NH₂OH concentrations

Fig.2 shows the flash yield pattern of N_2 evolution and O_2 evolution observed with chloroplasts in the presence of 5 μ M (top), and 10 μ M (bottom) NH₂OH. Note that N_2 was evolved primarily on the first flash, suggesting that NH₂OH was bound to the O_2 -evolving site in the dark. The results of a more extensive set of similar experiments are given in table 2.

It is probably futile to attempt to quantitatively describe the interaction of the S-states with these low concentrations of NH_2OH , due to the limited stability of the substrate, the occurrence of side reactions, and the well-documented extraction of the O_2 centers by NH_2OH . Nevertheless, the data do suggest that the O_2 -evolving site has a very high affinity for NH_2OH , particularly the S_0 state. The

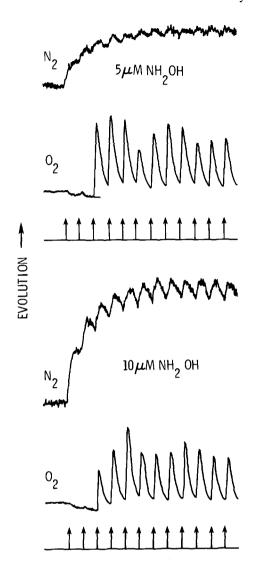


Fig. 2. Relative flash yields for N_2 and O_2 observed when 10 μ l chloroplasts (3.5 mg chl/ml) were subjected to a series of flashes (arrows) in the presence of 5 μ M NH₂OH (top) and 10 μ M NH₂OH (bottom). Dark time before the first flash was 10 min.

absence of significant loss of O_2 evolution capability at low NH_2OH concentrations, coupled with the pronounced shift in the flash yield maximum from Y_3-Y_5 , suggests that we are observing N_2 evolution by competent O_2 -evolving centers on the first flash.

3.3. Proposed mechanism

The salient reactions, and the complexity of the

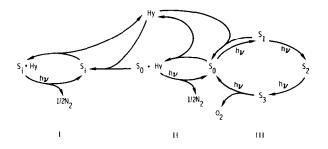


Fig.3. Pathways of NH₂OH interaction with the O₂-evolving system. Hy \equiv NH₂OH.

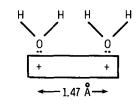


Fig.4. Model of the O₂-evolving system and its interaction with H₂O and NH₂OH.

overall process, can be discussed with reference to fig.3, which comprises 3 relevant cycles:

Cycle I, representing the series of reactions between NH₂OH and centers incapable of O₂ evolution. The production of these centers (from competent O₂ centers) may be unrelated to the reducing ability of NH₂OH [10–12].

Cycle II, the reactions of primary interest in this communication, represent the slow, high-affinity binding of NH₂OH by S_0 , and the light-driven discharge with the production of N₂.

Cycle III, the familiar O_2 clock [13], may involve NH_2OH as a mediator of deactivation, particularly from S_1 to S_0 .

Our data suggest that one molecule of tightly bound hydroxylamine is oxidized on the first flash by competent O_2 -evolving centers, after which O_2 evolution proceeds normally starting from S_0 generated in the dark, i.e.:

$$S_1 + NH_2OH \rightarrow S_0 + 1/2 N_2$$
 (dark reaction)

$$S_0 + NH_2OH \rightarrow S_0[NH_2OH]_{bound}$$

$$S_0[NH_2OH]_{bound} \stackrel{hy}{\longrightarrow} S_0 + 1/2 N_2$$

This reaction sequence is similar to one proposed in [12] but later withdrawn [1].

The observed steady-state N₂ evolution probably arises from the occurrence of cycle II (and possibly cycle III) back-reactions between flashes. This interpretation is supported by experiments in which the flash spacing was varied (unpublished). At higher [NH₂OH], cycle I becomes increasingly significant.

The reaction sequence shown suggests that

hydroxylamine must bind to the H₂O-oxidation site much more strongly than does H2O itself, since NH₂OH oxidation occurs at 10–20 μM in the presence of 55 M H₂O. The higher binding constant of the artificial donor does not reflect differences in the binding affinities of N and O since PS II reacts with NH₂OH, NH₂NH₂, and H₂O₂ at about the same concentrations [3,4,14]. A more likely possibility is that the efficient NH2OH binding reflects a decreased dissociation probability attributable to the simultaneous binding of > 1 group, possibly in a hindered environment. This supposition is supported by preliminary data obtained using NH₂OH analogs. (A similar argument has been used to rationalize the stability of chelates; see, e.g. [15,16].) If this inference is correct, it suggests that the H₂Ooxidation site of the chloroplasts has 2 H₂O binding sites ~ 1.47 Å apart (the length of the O-N bond) (fig.4).

ACKNOWLEDGEMENTS

This work was supported by the Department of Energy, Contract DE-AC02-82ER12015. We thank B. Velthuys for helpful discussions and critically reading the manuscript.

REFERENCES

- [1] Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 292, 772-785.
- [2] Bouges, B. (1971) Biochim. Biophys. Acta 234, 103-112.
- [3] Kok, B. and Velthuys, B.R. (1977) in: Research in Photobiology (Castellani, A. ed) pp. 111-119, Plenum, New York.

- [4] Velthuys, B.R. and Kok, B. (1978) Biochim. Biophys. Acta 502, 211–221.
- [5] Radmer, R. (1979) Biochim. Biophys. Acta 546, 418–425.
- [6] Radmer, R. and Ollinger, O. (1981) Biochim. Biophys. Acta 637, 80-87.
- [7] Jones, K. (1973) in: Comprehensive Inorganic Chemistry (Trotman-Dickenson, A.F. ed) vol. 2, pp. 147–388, Pergamon, New York.
- [8] Schwartz, M. (1966) Biochim. Biophys. Acta 112, 204-212.
- [9] Bennoun, P. (1970) Biochim. Biophys. Acta 216, 357–363.
- [10] Cheniae, G.M. and Martin, I.F. (1971) Plant Physiol. 47, 568-575.
- [11] Robinson, H.H., Sharp, R.R. and Yocum, C.F. (1980) Biochim. Biophys. Acta 593, 414–426.

- [12] Bennoun, P. and Bouges, B. (1972) in: Proc. 2nd Int. Cong. Photosynthesis (Forti, G. et al. eds) pp. 569-576, Junk, The Hague.
- [13] Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457-475.
- [14] Diner, B. and Joliot, P. (1977) in: Encyclopedia of Plant Physiology (Trebst, A. and Avron, M. eds) vol. 5, pp. 187-205, Springer-Verlag, Berlin, New York.
- [15] Parry, R.W. (1956) in: Chemistry of Coordination Compounds (Bailar, J. ed) pp. 220-252, Reinhold, New York.
- [16] Spike, C. (1952) Ph.D. Dissertation, Univ. of Michigan.
- [17] Doschek, W. and Kok, B. (1972) Biophys. J. 12, 832-838.